
10.3. Bellman-Ford Algorithm

 By: Snezhana Gocheva-Ilieva, snow@uni-plovdiv.bg

Basic problem 2

An oriented graph is given containing no contours with negative
length (equal to the sum of weights of their arcs). Find the minimal paths
from a given node to all other nodes of the graph.

This problem is a natural summary of the network planning problem. In

this case minimal paths need to be found not only within a network, but also for
a random path starting from a given node of the graph. One of the best-known
algorithms for solving this dynamic optimization problem is Bellman-Ford’s. It
uses output information from distances matrix R, introduced earlier in paragraph
10.1.

First we will consider a simple example which demonstrates the idea of
Bellman-Ford’s algorithm.

Example 3. In fig. 5 is shown an oriented weighted graph with 4 nodes,
containing 3 contours. Find the shortest distances from node 1 to all the other
nodes.

Fig. 5. Graph with 3 contours and its corresponding distances matrix.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∞

∞∞
∞

=

033
5022

30
470

4
3
2
1

R
2

1

2

4

3

7
3

3

3
2

4

5

Solution. The variable Di stands for the sought minimal distance from
node 1 to the i-th node. The solution goes through stages with and every stage
includes a new node and the new value for Di is recalculated. This goes on until
the resulting values can no longer get smaller. Variable k stands for the number
of the stage. In the initial stage k = 1 all Di are equal to the direct distance from
node 1 to the corresponding node.

We have:

k =1, Di = R1i, i.e. D1 = 0, D2 = 7, D3 = 4, D4 = ∞ .
k =2, D1 = 0,

mailto:snow@uni-plovdiv.bg

 D2 = min from D2 and the sums of the remaining Di with the distances
from the i-th node to the second node (second column of the matrix).
We have:

 D2 = min {7, 0+7, 4+2, ∞+3}= 6, (the minimum is underlined).
Likewise for a minimum of D3 and the sums of the remaining Di with the
third column of R:
 D3 = min { 4, 0+4, 7+3, ∞+3}= 4.
Likewise for D4 we calculate: Аналогично
 D4 = min {∞ , 0+ , 7+ , ∞ ∞ 4+5}= 9.

k = 3, D1 = 0,

 D2 = min {6, 0+7, 4+2, 9+3}= 6.
 D3 = min {4, 0+4, 6+3, 9+3}= 4.
 D4 = min {9, 0+ , 6+ , ∞ ∞ 4+5}= 9.

 We have reached a stage at which the results are the same as in the

previous one and they can’t get better. Therefore we’ve reached the minimal
distances that we sought. The calculations are written in the following table:

k D1 D2 D3 D4

1 0 7 4 ∞
2 0 6 4 9
3 0 6 4 9

The last row shows the minimal paths from 1 to every node.

General case - formulas for Bellman-Ford’s algorithm for graph
with n nodes

For the sake of convenience we consider the node for which minimal
distances are sought as number 1.

k =1, Di = R1i, i = 1, 2, … , n.

k =2, D1= 0,

(1) D2 = min {D2, D1+R12, D3+R32, … , Dn+Rn2},
D3 = min {D3, D1+R13, D2+R23, … , Dn+Rn3},
...
Dn = min {Dn, D1+R1n, D2+R2n, … , Dn-1+Rn-1,n}.

k =3, 4, ..., n-2.

 This procedure is repeated until we get two identical rows of distance in

the table or until n-2 is reached in the worst case.

Description of Bellman-Ford’s algorithm using metalanguage

Let a given oriented weighted graph (V, E) with n nodes V and arcs E,
which does not contain a contour with negative length. The aim is to find the
minimal distances from node number p to all other nodes of the graph. The
distances matrix R is given and the sought distances are recorded in an array D.
The number of stages obviously does not exceed n-2. Incoming and outgoing
operations have been skipped.

begin
for v∈V do D[v]:=R[p,v]; D[p]:=0;
for k:=1 to n-2 do
 begin for v∈V \ {p} do
 for u∈V do D[v]:= min (D[v], D[u] + R[p,v])
 end
end

The number of necessary arithmetical operations is O(n3).

Example 4. Use Bellman-Ford’s method for finding the minimal distances

from node 1 to all other nodes of the graph shown in fig. 6.

3

4

1

1

4

5

2 6

1

1 1

2

2

5

7

3

Fig. 6. Oriented graph with six contours.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∞∞∞∞
∞∞∞∞
∞∞

∞∞∞∞
∞∞

∞∞∞∞

=

01
03
4012

10
7250

10

6
5
4
3
2
1

R

Solution: Using formulas (1) we write the results down in a table. In the
formulas the case of a medial minimum has been underlined.

k =1, D1= 0, D2 = R12 = 1, D3 = D4 = D5 = D6 =∞ .
k =2, D1 = 0,

D2 = min {D2, D1+R12, D3+R32, D4+R42, D5+R52, D6+R62} =
 min {1, 0+1, + , ∞ ∞ ∞+∞ , ∞+∞ , ∞+∞ } = 1,
D3 = min {D3, D1+R13, D2+R23, D4+R43, D5+R53, D6+R63} =
 min {∞ , 0+ , ∞ 1+5, ∞+1 , ∞+∞ , ∞+∞ } = 6,
D4 = min {D4, D1+R14, D2+R24, D3+R34, D5+R54, D6+R64} =

 min {∞ , 0+ , ∞ 1+2, 6+∞ , ∞+3, ∞+∞ } = 3,
D5 = min {D5, D1+R15, D2+R25, D3+R35, D4+R45, D6+R65} =
 min {∞ , 0+ , 1+ , 6+∞ ∞ ∞ , 3+4 , ∞+1 } = 7,
D6 = min {D6, D1+R16, D2+R26, D3+R36, D4+R46, D5+R56} =
 min {∞ , 0+ , 1+7, ∞ 6+1 , 3+∞ , 7+∞ } = 7.

k =3, D1 = 0,
D2 = min {1, 0+1 , 6+ , 3+∞ ∞ , 7+∞ , 7+∞ } = 1,
D3 = min {6, 0+ , 1+5, ∞ 3+1, 7+∞ , 7+∞ } = 4,
D4 = min {3, 0+ , ∞ 1+2, 4+∞ , 7+3, 7+∞ } = 3,
D5 = min {7, 0+ , 1+∞ , 4+∞ ∞ , 3+4, 7+1} = 7,
D6 = min {7, 0+ , 1+7, ∞ 4+1, 3+∞ , 7+∞ } = 5.

k =4, D1 = 0,
D2 = min {1, 0+1, 6+ , 3+∞ ∞ , 7+∞ , 7+∞ } = 1,
D3 = min {6, 0+ , 1+5, ∞ 3+1, 7+∞ , 7+∞ } = 4,
D4 = min {3, 0+ , ∞ 1+2, 4+∞ , 7+3, 7+∞ } = 3,
D5 = min {7, 0+ , 1+∞ , 4+∞ ∞ , 3+4, 7+1} = 7,
D6 = min {7, 0+ , 1+7, ∞ 4+1, 3+∞ , 7+∞ } = 5.

k =5, D1 = 0,
D2 = min {1, 0+1 , 6+ , 3+∞ ∞ , 7+∞ , 5+∞ } = 1,
D3 = min {6, 0+ , 1+5, ∞ 3+1, 7+∞ , 5+∞ } = 4,
D4 = min {3, 0+ , ∞ 1+2, 4+∞ , 7+3, 5+∞ } = 3,
D5 = min {7, 0+ , 1+∞ , 4+∞ ∞ , 3+4, 5+1} = 6,
D6 = min {7, 0+ , 1+7, ∞ 4+1, 3+∞ , 5+∞ } = 5.

k D1 D2 D3 D4 D5 D6

1 0 1 ∞ ∞ ∞ ∞
2 0 1 6 3 7 7
3 0 1 4 3 7 5
4 0 1 4 3 6 5
5 0 1 4 3 6 5

	10.3. Bellman-Ford Algorithm

