
10.3.  Bellman-Ford Algorithm  
 
  By: Snezhana Gocheva-Ilieva, snow@uni-plovdiv.bg    

 
Basic problem 2  

An oriented graph is given containing no contours with negative 
length (equal to the sum of weights of their arcs). Find the minimal paths 
from a given node to all other nodes of the graph. 

 
This problem is a natural summary of the network planning problem. In 

this case minimal paths need to be found not only within a network, but also for 
a random path starting from a given node of the graph. One of the best-known 
algorithms for solving this dynamic optimization problem is Bellman-Ford’s. It 
uses output information from distances matrix R, introduced earlier in paragraph 
10.1. 

First we will consider a simple example which demonstrates the idea of 
Bellman-Ford’s algorithm. 

Example 3. In fig. 5 is shown an oriented weighted graph with 4 nodes, 
containing 3 contours. Find the shortest distances from node 1 to all the other 
nodes. 

Fig. 5. Graph with 3 contours and its corresponding distances matrix. 
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Solution. The variable Di stands for the sought minimal distance from 
node 1 to the i-th node. The solution goes through stages with and every stage 
includes a new node and the new value for Di is recalculated. This goes on until 
the resulting values can no longer get smaller. Variable k stands for the number 
of the stage. In the initial stage k = 1 all Di are equal to the direct distance from 
node 1 to the corresponding node.  

We have: 
 
k =1,  Di  = R1i,  i.e. D1 = 0, D2 = 7, D3 = 4, D4 = ∞ . 
k =2,   D1 = 0,  
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 D2 = min from D2  and the sums of the remaining Di with the distances 
from the i-th node to the second node (second column of the matrix). 
We have:  

 D2 = min {7, 0+7, 4+2, ∞+3}= 6, (the minimum is underlined). 
Likewise for a minimum of D3 and the sums of the remaining Di with the 
third column of R:  
 D3 = min { 4,  0+4, 7+3, ∞+3}= 4. 
Likewise for D4 we calculate: Аналогично  
 D4 = min {∞ , 0+ , 7+ , ∞ ∞ 4+5}= 9. 

 
k = 3,  D1 = 0,  

 D2 = min {6, 0+7,  4+2, 9+3}= 6. 
 D3 = min {4, 0+4, 6+3, 9+3}= 4. 
 D4 = min {9, 0+ , 6+ , ∞ ∞ 4+5}= 9. 
 
 We have reached a stage at which the results are the same as in the 

previous one and they can’t get better. Therefore we’ve reached the minimal 
distances that we sought. The calculations are written in the following table:  
 

k D1 D2 D3 D4

1 0 7 4 ∞  
2 0 6 4 9 
3 0 6 4 9 

 
The last row shows the minimal paths from 1 to every node. 
 
 

General case - formulas for Bellman-Ford’s algorithm for graph 
with n nodes 
 

For the sake of convenience we consider the node for which minimal 
distances are sought as number 1.  
 

k =1,  Di = R1i, i  = 1, 2, … , n. 
 
k =2,  D1= 0,  

(1) D2 = min {D2, D1+R12, D3+R32, … , Dn+Rn2},   
D3 = min {D3, D1+R13, D2+R23, … , Dn+Rn3},    
...  
Dn = min {Dn, D1+R1n, D2+R2n, … , Dn-1+Rn-1,n}.  

  
k =3, 4, ..., n-2. 

 
 This procedure is repeated until we get two identical rows of distance in 

the table or until n-2 is reached in the worst case.  



Description of Bellman-Ford’s algorithm using metalanguage  
 

Let a given oriented weighted graph (V, E) with n nodes V and arcs E, 
which does not contain a contour with negative length. The aim is to find the 
minimal distances from node number p to all other nodes of the graph. The 
distances matrix R is given and the sought distances are recorded in an array D. 
The number of stages obviously does not exceed n-2. Incoming and outgoing 
operations have been skipped. 
 

begin 
for  v∈V  do D[v]:=R[p,v];  D[p]:=0; 
for  k:=1  to n-2  do 
         begin for v∈V \ {p} do 
                     for  u∈V do D[v]:= min ( D[v],  D[u] + R[p,v] ) 
         end 
end 

 
The number of necessary arithmetical operations is O(n3).  

 
Example 4. Use Bellman-Ford’s method for finding the minimal distances 

from node 1 to all other nodes of the graph shown in fig. 6. 
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Fig. 6. Oriented graph with six contours. 
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Solution: Using formulas (1) we write the results down in a table. In the 
formulas the case of a medial minimum has been underlined. 
 
k =1,   D1= 0, D2 = R12 = 1, D3 = D4 = D5 = D6 =∞ . 
k =2,   D1 = 0,  

D2 = min {D2, D1+R12, D3+R32, D4+R42, D5+R52, D6+R62} =  
 min {1, 0+1, + , ∞ ∞ ∞+∞ , ∞+∞ , ∞+∞ } = 1, 
D3 = min {D3, D1+R13, D2+R23, D4+R43, D5+R53, D6+R63} = 
 min {∞ , 0+ , ∞ 1+5, ∞+1 , ∞+∞ , ∞+∞ } = 6,  
D4 = min {D4, D1+R14, D2+R24, D3+R34, D5+R54, D6+R64} = 



 min {∞ , 0+ , ∞ 1+2, 6+∞  , ∞+3, ∞+∞ } = 3,  
D5 = min {D5, D1+R15, D2+R25, D3+R35, D4+R45, D6+R65} = 
 min {∞ , 0+ , 1+ , 6+∞ ∞ ∞ , 3+4 , ∞+1 } = 7,  
D6 = min {D6, D1+R16, D2+R26, D3+R36, D4+R46, D5+R56} = 
 min {∞ , 0+ , 1+7, ∞ 6+1 , 3+∞ , 7+∞ } = 7.  
 

k =3,   D1 = 0,  
D2 = min {1, 0+1 , 6+ , 3+∞ ∞ , 7+∞ , 7+∞ } = 1,  
D3 = min {6, 0+ , 1+5, ∞ 3+1, 7+∞ , 7+∞ } = 4,  
D4 = min {3, 0+ , ∞ 1+2, 4+∞ , 7+3, 7+∞ } = 3,  
D5 = min {7, 0+ , 1+∞ , 4+∞ ∞ , 3+4, 7+1} = 7,  
D6 = min {7, 0+ , 1+7, ∞ 4+1, 3+∞ , 7+∞ } = 5.  
 

k =4,   D1 = 0,  
D2 = min {1, 0+1, 6+ , 3+∞ ∞ , 7+∞ , 7+∞ } = 1,  
D3 = min {6, 0+ , 1+5, ∞ 3+1, 7+∞ , 7+∞ } = 4,  
D4 = min {3, 0+ , ∞ 1+2, 4+∞ , 7+3, 7+∞ } = 3,  
D5 = min {7, 0+ , 1+∞ , 4+∞ ∞ , 3+4, 7+1} = 7,  
D6 = min {7, 0+ , 1+7, ∞ 4+1, 3+∞ , 7+∞ } = 5. 
 

k =5,   D1 = 0,  
D2 = min {1, 0+1 , 6+ , 3+∞ ∞ , 7+∞ , 5+∞ } = 1,  
D3 = min {6, 0+ , 1+5, ∞ 3+1, 7+∞ , 5+∞ } = 4,  
D4 = min {3, 0+ , ∞ 1+2, 4+∞ , 7+3, 5+∞ } = 3,  
D5 = min {7, 0+ , 1+∞ , 4+∞ ∞ , 3+4, 5+1} = 6,  
D6 = min {7, 0+ , 1+7, ∞ 4+1, 3+∞ , 5+∞ } = 5. 

 

k D1 D2 D3 D4 D5 D6

1 0 1 ∞  ∞  ∞  ∞  
2 0 1 6 3 7 7 
3 0 1 4 3 7 5 
4 0 1 4 3 6 5 
5 0 1 4 3 6 5 
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